
1

Developing a JNI Cocoa
Wrapper on OS X

Steve Hannah, Simon Fraser University <steve@weblite.ca>
October 9, 2012

Revision History
October 9, 2012

Added correct instructions for adding JDK 7 to the project. Previous version
described process for linking against deprecated Apple JDK6 JavaVM framework.

Also removed incorrect note about changing the jni.h include in the JNI header.

Also added note about JNF_COCOA_ENTER and JNF_COCOA_EXIT
rethrowing Objective-C exceptions as Java exceptions.

Also reworked the Objective-C implementation (3.1.10) so that the JNI environment
is not accessed from a separate thread. Added more comments to the example.

Thanks to Mike Swingler (@swingler) for these corrections.

Table of Contents
1. Synopsis .. 1
2. Source Code .. 2
3. What is JNI? .. 2

3.1. How it works .. 2
4. Wrapping the NSSavePanel .. 2

4.1. The Implementation .. 3
4.1.1. The Tools & Workflow ... 3
4.1.2. Developing the Java Stub in Netbeans ... 3
4.1.3. Generating the C-Header Files with javah ... 5
4.1.4. Creating an Xcode Project ... 7
4.1.5. Adding the JDK Headers to the Project .. 10
4.1.6. Adding The Header File to the Project ... 11
4.1.7. Create the Objective-C .m file .. 13
4.1.8. Writing a Simple Test Loader ... 16
4.1.9. The JavaNativeFoundation Framework ... 16
4.1.10. Implementing the Objective-C Function .. 17
4.1.11. Testing It Out .. 20

4.2. Deployment ... 21
5. Other Resources .. 21

1. Synopsis
This article describes how to build Java library that makes use of some native functionality on Mac OS X.
It gives a brief introduction to JNI (the Java Native Interface), then provides some concrete examples of
an implementation of a native wrapper for the NSSavePanel cocoa component.

Developing a JNI Cocoa
Wrapper on OS X

2

2. Source Code
You can download the source code for the project in this tutorial via Subversion at: http://weblite.ca/svn/
tutorials/jni_osx/trunk.

3. What is JNI?
JNI stands for "Java Native Interface". It provides a way for Java code call native code written in C,
Objective-C, or C++. If you are targeting a particular platform for your Java applications, it is likely that
you will need to delve into JNI to some extent in order to provide a fully native experience to the user.
One current example on Mac OS X is the file dialog. Later in this article we'll show how to create a JNI
wrapper around the native OS X file dialog to obtain some features that aren't currently available in Java's
built-in file dialog widgets.

3.1. How it works
The concept of JNI is actually quite simple. You define a java method as "native", but you don't define a
body for this method. You then define a function in a C library whose name matches (using some name
mangling conventions) the signature of the java method. At runtime you include the C library in your Java
application via the System.loadLibrary() method, then, when you call the native Java method, it
will call the C function and return its result.

4. Wrapping the NSSavePanel
Now, lets move onto a concrete example. We're going to create a JNI method to be able to display the
native OS X save panel with some added features that aren't available in the built-in Java save dialogs.
Specifically, we want to be able to require a specific file extension for the name of the file that the user is
saving. If the user doesn't specify the extension, then it will automatically be added for the user

Java provides two built-in dialogs for users to select files for opening or saving:

• java.awt.FileDialog

• javax.swing.JFileChooser

The JFileChooser class is a light-weight, pure Java dialog that can be extended or customized in any
way the you see fit. However, since it is light-weight, it behaves slightly differently (and depending on the
theme, drastically differently) than the native file chooser. Another problem is that it is incompatible with
the Mac sandbox (in which all applications that are sold in the App store must run).

The FileDialog class is an older, heavy-weight class. It essentially wraps a native file browser dialog
in a Java class. This means that it will always act like a native file dialog (because it is). Because it is
older and heavy-weight, it is far less flexible than JFileChooser. Very little about it can be changed.
However, on OS X, it is the recommended way to allow users to select files because of it's native look
and feel. If you want to be able to distribute your application in the App store, it is really the only option
because it will work inside the sandbox.

Tip

When I say that the JFileChooser won't work inside the Mac sandbox, that means that it will
only allow the user to select files inside the application's container. Usually a user will expect to
be able to open and save files in their Documents folder or Desktop. That isn't possible with
JFileChooser because it is not (and cannot be) tied into the OS X sandboxing permissions
system.

http://weblite.ca/svn/tutorials/jni_osx/trunk
http://weblite.ca/svn/tutorials/jni_osx/trunk

Developing a JNI Cocoa
Wrapper on OS X

3

The problem with the FileDialog is that it currently doesn't include a number of useful options to tweak
the dialog. For example, it doesn't provide a clean way to require a specific file extension for files that are
saved with it. Cocoa's native NSSavePanel includes a wealth of options for creating many types of file
dialogs that just can't be simulated (currently) with the FileDialog class.

In order to overcome these shortcomings, we're going to create a JNI wrapper around the NSSavePanel
so that we can use it in our Java application. This implementation will not be very flexible as we are
designing it to produce a save panel with exactly the options we require for our application.

4.1. The Implementation
Our JNI library will consist, minimally, of 3 source files:

• NSSavePanel.java - The Java wrapper class that contains the native stub for displaying the save
panel. (Fully qualified class name is ca.weblite.jniexample.NSSavePanel).

• ca_weblite_jniexample_NSSavePanel.h - The C header file for the JNI library. This file
name follows the JNI naming convention where the file name is the same as the Java class name, but
with '.' replaced with '_'.

• ca_weblite_jniexample_NSSavePanel.m - The Objective-c implementation.

The output (i.e. after building) will consist of only 2 files:

• jniexample.jar - Contains the Java .class files.

• libsavepanel.dylib - The OS X shared library containing all of the native code.

It is also possible to include the dylib inside the jar file, but we won't discuss that tweak here. At runtime,
you just need to make sure that the dylib file is located in one of the directories listed in the java.library.path
System property.

4.1.1. The Tools & Workflow

For this example, we will use Netbeans to develop the Java library. We will then use the javah command-
line tool (or ANT task) to generate the C header file for our library. Then we will create a new Xcode project
to develop the Objective-C portions, and add the header file that was generated by javah to the project.

4.1.2. Developing the Java Stub in Netbeans

For the Java stub, we don't require any special type of netbeans project. You can add native methods to
any class in any Java project. They will compile fine even if the native methods haven't been implemented
yet. The linking doesn't happen until runtime. The file structure for this example is as follows:

Figure 1. Project structure as shown in netbeans project explorer

Developing a JNI Cocoa
Wrapper on OS X

4

The contents of the NSSavePanel class is as follows:

package ca.weblite.jniexample;

/**
 * A wrapper class for the Native save panel in OS X
 * @author shannah
 */
public class NSSavePanel {

 public static boolean loaded = false;
 static {
 try {
 System.loadLibrary("savepanel");
 loaded = true;
 } catch (UnsatisfiedLinkError err){
 throw new RuntimeException(err);
 }
 }

 public native String saveDialog(String title, String extension);

}

Let's look at this example piece by piece, starting with the last part: the native method definition:

public native String saveDialog(String title, String extension);

This is the stub for the native method that will be defined in our C-library. This looks the same as a normal
Java method signature except for two things:

1. The native identifier. This tells Java to look in the loaded C-libraries at runtime for the method
definition.

2. There is no method body. In this sense the definition looks very similar to an abstract method definition,
and, in effect it is. An abstract method signals that it will be implemented by a subclass, so no body is
necessary. A native method signals that it will be implemented by a native C library, and thus doesn't
require a body.

Now, let's look at the first part of this class definition:

public static boolean loaded = false;
static {
 try {
 System.loadLibrary("savepanel");
 loaded = true;
 } catch (UnsatisfiedLinkError err){
 throw new RuntimeException(err);
 }
}

This is the code that actually loads the native library that we are going to create. We place this in a static
block so that it runs before any code in the class does, and thus should have happened by the time any
call is made to the saveDialog method. You actually have quite a bit of flexibility in how and when you

Developing a JNI Cocoa
Wrapper on OS X

5

load your library. In some cases you may have one large library that contains all of your native method
definitions. Then you would probably load this from a central location, then Java would look there for
your native method definitions. All that matters is that some library containing your method definition has
been loaded a some point at runtime.

The key ingredient here is the System.loadLibrary() call. It will look in all of the
library path locations (specified in the java.library.path System.property) to find a library named
libsavepanel.dylib. It it finds it and it is able to load it successfully then execution
proceeds smoothly. If, for some reason, it fails to find or load the library, it will throw an
UnsatisfiedLinkError, which you can catch and handle however you like. In this case we are
wrapping it and just throwing a RuntimeException. In practice you should probably handle this with
a bit more grace and fall back to some default behavior.

Tip

On Mac OS X, all dynamic libraries must begin with "lib", so even though the loadLibrary()
method says to load the library named "savepanel", it will actually be looking for a library file
named "libsavepanel.dylib".

4.1.3. Generating the C-Header Files with javah

After you have created the java stub, we can generate the C-header files using the javah tool. In this example
we're actually going to use the javah ant task. That way the header will automatically be generated every
time we compile the project in Netbeans.

Modify the build.xml file of your Netbeans project by adding the following before the closing </
project> tag:

<target name="-post-compile">
 <javah
 destdir="./build"
 force="yes"
 class="ca.weblite.jniexample.NSSavePanel"
 classpath="./build/classes"
 />
</target>

This basically says that we're going to generate a header file to be saved inside the ./build directory
for the Java class "ca.weblite.jni.example.NSSavePanel". Now, after compiling our project
we should see the file ca_weblite_jniexample_NSSavePanel.h as shown in the Netbeans file
explorer below:

Developing a JNI Cocoa
Wrapper on OS X

6

Figure 2. The header .h file saved inside the build directory after compiling.

The contents of the ca_weblite_jniexample_NSSavePanel.h file are as follows:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class ca_weblite_jniexample_NSSavePanel */

#ifndef _Included_ca_weblite_jniexample_NSSavePanel
#define _Included_ca_weblite_jniexample_NSSavePanel
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: ca_weblite_jniexample_NSSavePanel
 * Method: saveDialog
 * Signature: (Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;
 */
JNIEXPORT jstring JNICALL Java_ca_weblite_jniexample_NSSavePanel_saveDialog
 (JNIEnv *, jobject, jstring, jstring);

#ifdef __cplusplus
}
#endif
#endif

A Description of the Code. There really isn't a lot going on here. The key line to focus on here is the
method signature:

JNIEXPORT jstring JNICALL Java_ca_weblite_jniexample_NSSavePanel_saveDialog
 (JNIEnv *, jobject, jstring, jstring);

Some key points to observe:

1. The method returns the type jstring. This is a JNI data type that is defined in jni.h to act as pointer
to a java.lang.String class. This return type is used because the Java saveDialog() method
that we defined, returns a type String, so the native method must return a corresponding type.

Developing a JNI Cocoa
Wrapper on OS X

7

2. The name of the method has been named with the following naming convention:

• The method name starts with Java_

• After the Java_ prefix, the remainder of the method name matches exactly the fully qualified method
name from Java, except that dots (".") have been replaced with underscores.

3. The first parameter is a JNIEnv pointer that provides information about the JNI environment to the
method. This is very useful for accessing the many utility functions that are available to help you
navigate between Java and Objective-C types.

4. The second parameter is of type jobject, which is the JNI equivalent of java.lang.Object. If
serves as a pointer to "this" (i.e. the NSSavePanel on which the method is running). This parameter
would not be present if our method had been declared static.

5. Finally, the last two parameters of type jstring correspond with the two parameters that are passed to
the Java method.

4.1.4. Creating an Xcode Project

Finally, we can proceed to build our native library in Xcode. For this example, I'm using Xcode 4.4.

Step one is to open Xcode and start a new project.

Developing a JNI Cocoa
Wrapper on OS X

8

Figure 3.

Select the "Cocoa Library" option as we wish to distribute our library as a dynamic library (.dylib).

Click Next

Developing a JNI Cocoa
Wrapper on OS X

9

Figure 4.

On this pane, we enter the product details. For convenience, I'm naming the product "libsavepanel", so that
it will produce a library named "libsavepanel.dylib" when it is built automatically. You could, of course,
just rename the library later or change a setting in Xcode if you want to name your product something else.

Important

You must uncheck the "Use Automatic Reference" counting option. If you fail to do
this, you will experience crashes when you try to use JavaNativeFoundation functions like
JNF_COCOA_ENTER and JNF_COCOA_EXIT.

Click "Next" to select a location to save the project. Once you have selected a location, Xcode should
open the empty project for you.

Developing a JNI Cocoa
Wrapper on OS X

10

The project explorer on the left column of the Xcode UI will show the file structure of the project as follows:

Figure 5.

4.1.5. Adding the JDK Headers to the Project

Since our project will depend on some libraries in the Java development kit (e.g. jni.h), we will need to
add the the headers in the JDK's include directory to our project's header search path. As of OS X 10.7, all
of your JDK libraries will be located in the /Library/Java/JavaVirtualMachines directory.
You can either add the full path to JDK's include directory, or you can copy the include directory into
your project folder, and then add that copy to your header search path. For this example, we'll copy it into
our project directory so that the project is more portable (i.e. we won't have to depend on the installation
location of the JDK in order to build our library.

We'll do this in a few steps:

1. Create a folder inside the project's directory called jdk.

2. Copy the central JDK's include directory into the jdk directory we just created.

$ cp -r /Library/Java/JavaVirtualMachines/jdk1.7.0.jdk/Contents/Home/include \
/path/to/libsavepanel/jdk/include

3. Add both the jdk/include and jdk/include/darwin directories to the project's build
target's headers search path. This can be accomplished inside Xcode by clicking on the
libsavepanel option (the top option) in the project explorer (i.e. the left column of Xcode), then
clicking the libsavepanel target under the TARGETS section of the next column (left column
of the main panel).

Developing a JNI Cocoa
Wrapper on OS X

11

Figure 6.

Finally, in the Build settings panel (the main section with all of the target properties), find the
"Header Search Paths" option.

Figure 7.

Double click the empty space to the right of this option to edit the search paths. Then add the following
two search paths, each on their own line:

1. $(SRCROOT)/jdk/include

2. $(SRCROOT)/jdk/include/darwin

Note

If you type in these search paths wrong, you'll likely see errors when you try to build your
project indicating that jni.h could not be found. If you get such errors, take a good look at
these search paths to ensure that the are pointing to the correct location, and that you have
correctly copied the JDK headers into the correct location.

4.1.6. Adding The Header File to the Project

Now that our project is created, we proceed by adding the header file that we generated for our JNI library.
Right-click (or control-click) on the libsavepanel folder in the project explorer of the Xcode project to
reveal the context menu. Then select the option "Add Files to libsavepanel..."

Developing a JNI Cocoa
Wrapper on OS X

12

Figure 8.

Then select the ca_weblite_jniexample_NSSavePanel.h file that was created. Once the file
has been added, it should appear in the project explorer as shown below:

Developing a JNI Cocoa
Wrapper on OS X

13

Figure 9.

4.1.7. Create the Objective-C .m file

The implementation of our native method will go inside a .m file that we need to create. We're do that
by selecting "File" > "New" > "File" from the top menu bar. And then selecting "Objective-C Class" for
the file type:

Developing a JNI Cocoa
Wrapper on OS X

14

Figure 10.

When it prompts you for the class name enter the exact name of your header file (minus the .h). E.g. in
this case our class name will be "ca_weblite_jniexample_NSSavePanel".

Note

We don't actually need to create an objective C class. We just needed to create a file that would be
compiled using Objective-C. When the file is generated, we'll delete its contents and start fresh
anyways. Ultimately we just want an implementation file to accompany the .h file.

Developing a JNI Cocoa
Wrapper on OS X

15

Now that we have our objective-c implementation file, let's delete the contents and create an empty function
to correspond with the definition in our header file:

#include "ca_weblite_jniexample_NSSavePanel.h"

JNIEXPORT jstring JNICALL Java_ca_weblite_jniexample_NSSavePanel_saveDialog
(JNIEnv * env, jobject jthis, jstring title, jstring extension){

 return NULL;
}

Essentially I created this method definition by copying the signature from the header file, then adding
parameter names to the parameter types.

At this point, we have enough to at least test and make sure that our library can be loaded and
used properly. Begin by building the Xcode project ("Project" > "Build"). Then right click on the
libsavepanel.dylib item in the "Products" folder of the Xcode project explorer, and select "Show
in Finder".

Figure 11.

This will allow us to copy the dylib file into our Java project directory. After copying the
libsavepanel.dylib file into our JNIExample project directory (the Netbeans project), our project
directory will look like:

Developing a JNI Cocoa
Wrapper on OS X

16

Figure 12.

4.1.8. Writing a Simple Test Loader

At this point we have a bare-bones JNI module where the native method only returns NULL. This is a good
time to test our module out and make sure that it, at least, is loaded properly by our Java application. Let's
add a main() method to our NSSavePanel class so that we can test out our module.

public static void main(String[] args){
 new JFrame(); // Necessary to start the windowing system
 NSSavePanel panel = new NSSavePanel();
 String result = panel.saveDialog("Select a file", "pdf");
 System.out.println("The result was "+result);
}

Now, if you run this file from Netbeans, you should see the following output:

run:
The result was null
BUILD SUCCESSFUL (total time: 0 seconds)

So you can see that our native method returned null, just as expected.

Tip

If you don't receive this output, but instead receive an UnsatisfiedLinkError, or if your
application just crashes, then you may want to doublecheck that your libsavepanel.dylib
is named correctly and located in the top level of your project's folder (or in some directory
included in your library path).

4.1.9. The JavaNativeFoundation Framework

Now that we know that our library is loading properly, it is all down hill from here. We just need to
implement the native method in Objective-C. Before we move into the code, there is one more thing that
we need to do with our Xcode project: Add the JavaNativeFoundation framework.

Developing a JNI Cocoa
Wrapper on OS X

17

Tip

The Java Native Framework is a collection of C functions and macros that provide easier
interoperability between the Java world and the Cocoa world. It includes functions for
converting between NSStrings and Java strings. The two most frequently used macros are
JNF_COCOA_ENTER(env) and JNF_COCOA_EXIT(env) which are meant to be called
respectively at the beginning and end of each function. These will set up and take down
Autorelease pools, as well as help clean up memory in case an exception is thrown in the body
of the method. In addition, these will catch Objective-C exceptions and rethrow them as Java
exceptions. If you don't use these, your function will probably still work, but you run a greater
risk of introducing subtle bugs and memory leaks.

You can add the JavaNativeFramework by right-clicking (or control-clicking) on the Frameworks
folder in your Xcode project explorer, and selecting "Add files to libsavepanel...". Then, in the file
dialog, browse to the JavaNativeFoundation.framework file located as /System/Library/
Frameworks/JavaVM.framework/Frameworks

Important

The JavaNativeFoundation framework is a sub-framework of the JavaVM framework.
Do not add the JavaVM framework to your project if you are using JDK 7 or higher. Only add
the JavaNativeFoundation.framework.

After adding the JavaNativeFoundation framework to your project, the "Frameworks" folder
will look like:

Figure 13.

4.1.10. Implementing the Objective-C Function

Now we are ready to do some coding. After implementing our method, the final
ca_weblite_jniexample_NSSavePanel.m file content is:

#include "ca_weblite_jniexample_NSSavePanel.h"
#import "JavaNativeFoundation/JavaNativeFoundation.h"
#import "AppKit/AppKit.h"

JNIEXPORT jstring JNICALL Java_ca_weblite_jniexample_NSSavePanel_saveDialog
(JNIEnv * env, jobject jthis, jstring title, jstring extension){

 // Obligatory opening to the JNI method. Sets up an autorelease pool,
 // and rethrows Objective-C exceptions as Java exceptions. (Paired
 // with JNF_COCOA_EXT(env) at end of method.
 JNF_COCOA_ENTER(env);

Developing a JNI Cocoa
Wrapper on OS X

18

 // A jstring container for the output value
 jstring path = NULL;

 // Placeholder for the NSString path that will be set inside the block
 __block NSString *nsPath = Nil;;

 // Copy the title to an NSString so it an be used safely inside the block
 // even if it is on a different thread
 NSString *nsTitle = JNFJavaToNSString(env, title);

 // Copy the extension into an NSString so it can be used safely inside
 // the block even if it is on a different thread
 NSString *cocoaExtension = JNFJavaToNSString(env, extension);

 // Create a block for the code that will create and interact with
 // the NSSavePanel so that it can be run on a different thread. All
 // interaction with the NSSavePanel class needs to be on the main application
 // thread, so if this method is accessed on a different thread (e.g.
 // the AWT event thread, we'll need to block and run this code on the
 // main application thread.
 void (^block)(void);
 block = ^(void){
 // This block's code must ONLY ever be run on the main
 // application thread.

 NSSavePanel *panel = [NSSavePanel savePanel];
 NSArray *types = [NSArray arrayWithObjects: cocoaExtension,nil];
 [panel setAllowedFileTypes: types];
 [panel setCanSelectHiddenExtension:TRUE];
 [panel setExtensionHidden:TRUE];
 [panel setTitle: nsTitle];
 if ([panel runModal] == NSFileHandlingPanelOKButton){
 // The user clicked OK in the file save dialog, so we
 // now save the user's file path selection in the nsPath.
 NSURL * out = [[panel URL] filePathURL];

 // Set the nsPath so that it can be accessed outside this
 // block after it is run. We call retain on the string
 // so that it won't be destroyed after the block is
 // finished executing.
 nsPath = [[out path] retain];
 }
 };

 // Check if this is already running on the main thread.
 if ([NSThread isMainThread]){
 // We are on the main thread, so we can execute the block directly.
 block();
 } else {
 // We are not on the main thread so we need to run the block on the
 // main thread, and wait for it to complete.
 [JNFRunLoop performOnMainThreadWaiting:YES withBlock:block];

Developing a JNI Cocoa
Wrapper on OS X

19

 }

 if (nsPath != nil){
 // Since nsPath is Not nil, it looks like the user chose a file
 // Copy the NSString path back to the jstring to be returned
 // from the method.
 path = JNFNSToJavaString(env, nsPath);

 // Release the nsPath to prevent memory leak.
 [nsPath release];
 }

 // Return the path. This may be null
 return path;

 // Matching the opening JNF_COCOA_ENTER(env) at the beginning of the method.
 JNF_COCOA_EXIT(env);

 // It is necessary to return NULL here in case there was some failure or
 // exception that prevented us from reaching the return statements inside
 // the JNF_COCOA_ENTER/EXIT region.
 return NULL;

}

This source code is the result of a few iterations, so it requires some explanation.

1. The Block. Since we are using a Cocoa component (NSSavePanel), and it blocks, we need to take
some care when it comes to thread management to make sure that the code that interacts with the actual
Save panel is running on the main thread. To this end, we wrap most of the code inside a block. Then
we use the [+JNFRunLoop performOnMainThreadWaiting:withBlock] method to cause
the block to run on the main thread while the current thread waits.

2. JNF_COCOA_ENTER(env) and JNF_COCOA_EXIT(env). These macros are placed at the beginning
and end of the method to help with memory management. These will set up an autorelease pool and
help clean up memory in case an exception is thrown in the body of the method.

Important

JNF_COCOA_ENTER and JNF_COCOA_EXIT currently cannot be used with Automatic
Reference Counting. Make sure you have Automatic Reference Counting (ARC) off in your
project, or you will experience crashes at runtime.

3. Return NULL after JNF_COCOA_ENTER. If an exception is thrown inside the JNF_COCOA_ENTER/
EXIT calls, then it is possible that none of the return statements will be reached in your method. To
handle this case, you should return NULL after the JNF_COCOA_EXIT call.

4. The JNI environment should only be accessed from the thread in which the JNI method is called. Notice
that we do not use any of the jstring objects or call any JNF functions from inside the block because
this block might be running on a different thread than the JNI environment was created on. Accessing
one of these variables from a different thread may cause the JVM to crash. We solved this problem by
first copying the jstring values that were required by the block into NSString objects which can
safely be used between threads.

Developing a JNI Cocoa
Wrapper on OS X

20

4.1.11. Testing It Out

We're done now. It's time to test it, so we'll build the Xcode project, copy the libsavepanel.dylib file into
the JNIExample directory (i.e. the Netbeans project), then try to run the NetBeans test. It should open
up a save dialog as follows:

Figure 14.

And if you enter a file name, then the dialog will close and you should see the following output in the
console:

run:
The result was /Users/shannah/Downloads/testdocument.pdf
BUILD SUCCESSFUL (total time: 1 minute 6 seconds)

Developing a JNI Cocoa
Wrapper on OS X

21

4.2. Deployment
By default, Xcode will try to build projects to be deployed on the latest OS. If you want to deploy it on an
older OS (e.g. if you are building the library on Mountain Lion (OS X 10.8) and you want to make sure
it works on 10.6 or higher), then you will need to set the OS X Deployment Target setting in the
project properties to the oldest version that you want to target.

If you are planning to include your JNI library as part of a Mac application bundle, then you should place
it inside the Contents/MacOS directory of the .app bundle. The JavaApplicationLauncher that
is produced by ApplicationBundler sets this as the default directory for java.library.path, so your
library should get "found" if it is placed there.

5. Other Resources
I wrote this tutorial partly because I found that, while there are many resources around the internet on the
various aspects of JNI, there weren't any that tied it all together for developing a JNI module for Mac OS
X. The following are some useful resources for developing JNI libraries:

• JavaNativeFoundation Reference [http://developer.apple.com/library/mac/#documentation/
CrossPlatform/Reference/JavaNativeFoundation_Functions/Reference/reference.html]

• JNI Wikipedia Page [http://en.wikipedia.org/wiki/Java_Native_Interface]

• Oracle JNI Documentation (JDK6) [http://docs.oracle.com/javase/7/docs/technotes/guides/jni/]

http://developer.apple.com/library/mac/#documentation/CrossPlatform/Reference/JavaNativeFoundation_Functions/Reference/reference.html
http://developer.apple.com/library/mac/#documentation/CrossPlatform/Reference/JavaNativeFoundation_Functions/Reference/reference.html
http://developer.apple.com/library/mac/#documentation/CrossPlatform/Reference/JavaNativeFoundation_Functions/Reference/reference.html
http://en.wikipedia.org/wiki/Java_Native_Interface
http://en.wikipedia.org/wiki/Java_Native_Interface
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/

