Developing a JNI Cocoa
Wrapper on OS X

Steve Hannah, Simon Fraser University <st eve@webl i t e. ca>
October 9, 2012

Revision History
October 9, 2012
Added correct instructions for adding JDK 7 to the project. Previous version
described process for linking against deprecated Apple JDK6 JavaVM framework.
Also removed incorrect note about changing the jni.h include in the JNI header.

Also added note about INF_COCOA_ENTER and JNF_COCOA_EXIT
rethrowing Objective-C exceptions as Java exceptions.

Also reworked the Objective-C implementation (3.1.10) so that the JNI environment
is not accessed from a separate thread. Added more comments to the example.

Thanks to Mike Swingler (@swingler) for these corrections.

Table of Contents

B o 01 PPN 1
P o 1 oY oo [T PSP 2
G T g T 1 2
L HOW T WOTKS L.t et e e e e et e e e aaa s 2

4. Wrapping the NSSaVEPaNE|iiiiiiiiii e 2
T I =N o] = 09 T= g1 = o) 3
4.1.1. The TOOIS & WOIKFIOW ...ccvvviiiiiiiiiieee e 3

4.1.2. Developing the Java Stub in Netheansccoevviieiii i, 3

4.1.3. Generating the C-Header Fileswith javahcccoooiiiiiiii e, 5

4.1.4. Creating an Xcode PrOJECEccuuiiiiicii e e 7

4.1.5. Adding the JDK Headersto the Projectovvvviiiii i, 10

4.1.6. Adding The Header Fileto the Projectcc.ovvvviiiiiicii e 11

4.1.7. Create the Objective-C .M il ...ovevn i 13

4.1.8. Writing a Simple Test LOaderooviiiiiiiiici e 16

4.1.9. The JavaNativeFoundation Frameworkcoceuiiieiiiiinieiiiiin e 16

4.1.10. Implementing the Objective-C FUNCLIONcovvviviiiiii e 17

O T == 11T N A | PSR 20

A T [0}/ 1 1= o | PN 21

B, OLNEN RESOUICES ...t etieiit ettt e ettt e ettt e ettt e e ettt e e ettt e e e e ett e e e eett e e e eett e eeeestnaeaeees 21

1. Synopsis

This article describes how to build Javalibrary that makes use of some native functionality on Mac OS X.
It gives a brief introduction to JNI (the Java Native Interface), then provides some concrete examples of
an implementation of a native wrapper for the NSSavePanel cocoa component.

Developing a JNI Cocoa
Wrapper on OS X

2. Source Code

Y ou can download the source code for the project in this tutorial via Subversion at: http://weblite.ca/svn/
tutorialg/jni_osx/trunk.

3. What is JNI?

JNI stands for "Java Native Interface”. It provides a way for Java code call native code written in C,
Objective-C, or C++. If you are targeting a particular platform for your Java applications, it islikely that
you will need to delve into JNI to some extent in order to provide a fully native experience to the user.
One current example on Mac OS X isthefile dialog. Later in this article we'll show how to create a NI
wrapper around the native OS X file dialog to obtain some features that aren't currently available in Java's
built-in file dialog widgets.

3.1. How it works

The concept of NI is actually quite ssimple. Y ou define ajava method as "native", but you don't define a
body for this method. Y ou then define a function in a C library whose name matches (using some name
mangling conventions) the signature of the javamethod. At runtime you include the C library in your Java
application viathe Syst em | oadLi br ary() method, then, when you call the native Java method, it
will call the C function and return its result.

4. Wrapping the NSSavePanel

Now, lets move onto a concrete example. We're going to create a JNI method to be able to display the
native OS X save panel with some added features that aren't available in the built-in Java save dialogs.
Specifically, we want to be able to require a specific file extension for the name of the file that the user is
saving. If the user doesn't specify the extension, then it will automatically be added for the user

Java provides two built-in dialogs for usersto select files for opening or saving:
* java.awmt . Fi | eDi al og
* javax. swi ng. JFi | eChooser

TheJFi | eChooser classisalight-weight, pure Java dialog that can be extended or customized in any
way the you seefit. However, sinceit islight-weight, it behaves dlightly differently (and depending on the
theme, drastically differently) than the native file chooser. Another problem isthat it isincompatible with
the Mac sandbox (in which all applications that are sold in the App store must run).

TheFi | eDi al og classisan older, heavy-weight class. It essentially wraps a native file browser dialog
in a Java class. This means that it will always act like a native file dialog (because it is). Because it is
older and heavy-weight, it is far less flexible than JFi | eChooser . Very little about it can be changed.
However, on OS X, it is the recommended way to allow users to select files because of it's native look
and fedl. If you want to be able to distribute your application in the App store, it isreally the only option
because it will work inside the sandbox.

Tip

When | say that the JFi | eChooser won't work inside the Mac sandbox, that means that it will
only allow the user to select filesinside the application's container. Usually a user will expect to
be able to open and savefilesin their Docunent s folder or Deskt op. That isn't possible with

JFi | eChooser becauseit is not (and cannot be) tied into the OS X sandboxing permissions
system.

http://weblite.ca/svn/tutorials/jni_osx/trunk
http://weblite.ca/svn/tutorials/jni_osx/trunk

Developing a JNI Cocoa
Wrapper on OS X

TheproblemwiththeFi | eDi al ogisthat it currently doesn't include anumber of useful optionsto tweak
the dialog. For example, it doesn't provide a clean way to require a specific file extension for filesthat are
saved with it. Cocoa's native NSSavePanel includes awealth of options for creating many types of file
dialogsthat just can't be simulated (currently) with the Fi | eDi al og class.

In order to overcome these shortcomings, we're going to create a JNI wrapper around the NSSavePanel
so that we can use it in our Java application. This implementation will not be very flexible as we are
designing it to produce a save panel with exactly the options we require for our application.

4.1. The Implementation

Our NI library will consist, minimally, of 3 sourcefiles:

* NSSavePanel . j ava - The Java wrapper class that contains the native stub for displaying the save
panel. (Fully qualified classnameisca. webl i t e. j ni exanpl e. NSSavePanel).

e ca_weblite_ jniexanpl e NSSavePanel . h - The C header file for the NI library. This file
name follows the JNI naming convention where the file name is the same as the Java class name, but
with "' replaced with ' ",

* ca_weblite_jni exanpl e_NSSavePanel . m- The Objective-c implementation.
The output (i.e. after building) will consist of only 2 files:

* j ni exanpl e. j ar - Containsthe Java .classfiles.

* |l i bsavepanel . dyli b - The OS X shared library containing all of the native code.

Itisaso possibleto include the dylib inside the jar file, but we won't discuss that tweak here. At runtime,
you just need to make surethat the dylib fileislocated in one of thedirectorieslisted in thejavalibrary.path
System property.

4.1.1. The Tools & Workflow

For thisexample, wewill use Netbeansto develop the Javalibrary. Wewill then usethej avah command-
linetool (or ANT task) to generatethe C header filefor our library. Thenwewill create anew X code project
to devel op the Objective-C portions, and add the header file that was generated by j avah to the project.

4.1.2. Developing the Java Stub in Netbeans
For the Java stub, we don't require any special type of netbeans project. You can add native methods to
any classin any Java project. They will compilefine even if the native methods haven't been implemented

yet. The linking doesn't happen until runtime. The file structure for this example is as follows:

Figure 1. Project structure as shown in netbeans project explorer

¥ & JNIExample
¥ | Source Packages
v [ca.weblite.jniexample
E
¥ | &g Libraries

» =] JDK 1.7 (Default)

Developing a JNI Cocoa
Wrapper on OS X

The contents of the NSSavePanel classis asfollows:

package ca.weblite.jniexanple;

/**

* A wrapper class for the Native save panel in OS X
* @ut hor shannah

*/

public cl ass NSSavePanel {

public static bool ean | oaded = fal se;
static {
try {
System | oadLi brary("savepanel ");
| oaded = true;
} catch (UnsatisfiedLinkError err){
t hrow new Runti meException(err);
}

}

public native String saveDialog(String title, String extension);

}
Let'slook at this example piece by piece, starting with the last part: the native method definition:
public native String saveDialog(String title, String extension);

Thisisthe stub for the native method that will be defined in our C-library. Thislooksthe same asanormal
Java method signature except for two things:

1. The native identifier. This tells Java to look in the loaded C-libraries at runtime for the method
definition.

2. Thereisno method body. In this sense the definition looks very similar to an abstract method definition,
and, in effect it is. An abstract method signals that it will be implemented by a subclass, so no body is
necessary. A native method signals that it will be implemented by a native C library, and thus doesn't
require abody.

Now, let'slook at the first part of this class definition:

public static bool ean | oaded = fal se;
static {
try {
System | oadLi brary("savepanel ");
| oaded = true;
} catch (UnsatisfiedLinkError err){
t hrow new Runti meException(err);
}

}

Thisisthe code that actually loads the native library that we are going to create. We place thisin a static
block so that it runs before any code in the class does, and thus should have happened by the time any
call is made to the saveDialog method. Y ou actually have quite a bit of flexibility in how and when you

Developing a JNI Cocoa
Wrapper on OS X

load your library. In some cases you may have one large library that contains all of your native method
definitions. Then you would probably load this from a central location, then Java would look there for
your native method definitions. All that mattersisthat some library containing your method definition has
been loaded a some point at runtime.

The key ingredient here is the System | oadLi brary() cal. It will look in al of the
library path locations (specified in the javalibrary.path System.property) to find a library named
| i bsavepanel . dylib. It it finds it and it is able to load it successfully then execution
proceeds smoothly. If, for some reason, it fails to find or load the library, it will throw an
Unsat i sfi edLi nkEr r or, which you can catch and handle however you like. In this case we are
wrapping it and just throwing aRunt i meExcept i on. In practice you should probably handle thiswith
abit more grace and fall back to some default behavior.

Tip

OnMac OS X, al dynamiclibraries must beginwith "lib", so eventhoughthel oadLi br ar y()
method says to load the library named "savepanel”, it will actually be looking for a library file
named "libsavepanel .dylib".

4.1.3. Generating the C-Header Files with javah

After you have created the javastub, we can generate the C-header filesusing thejavah tool. Inthisexample
we're actually going to use the javah ant task. That way the header will automatically be generated every
time we compile the project in Netbeans.

Modify the bui | d. xmi file of your Netbeans project by adding the following before the closing </
pr oj ect > tag:

<t arget name="-post-conpile">
<j avah
destdir="./build"
force="yes"
cl ass="ca. weblite.jniexanpl e. NSSavePanel "
cl asspat h="./buil d/ cl asses"
/>
</target>

This basically says that we're going to generate a header file to be saved inside the . / bui | d directory
for the Javaclass"ca. webl i te. j ni . exanpl e. NSSavePanel ". Now, after compiling our project
we should seethefileca_webl i t e_j ni exanpl e_NSSavePanel . h asshown in the Netbeansfile
explorer below:

Developing a JNI Cocoa
Wrapper on OS X

Figure 2. The header .h file saved inside the build directory after compiling.

v [INIExample
v [build
» [classes
»] empty
» (] generated-sources
[EI built-jar.properties
'F'__‘I ca_weblite_jniexample_NS5avePanel.h
» [dist
» [] nbproject
» [src
> B

The contents of theca_webl i t e_j ni exanpl e_NSSavePanel . h fileare asfollows:

/* DO NOT EDIT THIS FILE - it is nachine generated */
#i ncl ude <jni. h>
/* Header for class ca_weblite_jniexanpl e NSSavePanel */

#i fndef _lIncluded_ca_weblite_jni exanpl e_NSSavePanel
#define _Included _ca weblite_ jni exanpl e _NSSavePanel
#i fdef _ cpl uspl us

extern "C" {

#endi f

/*
* d ass: ca_weblite_jni exanpl e_NSSavePanel
* Met hod: saveDi al og

* Signature: (Ljava/lang/String;Ljaval/lang/String;)Ljaval/lang/ String;
*/
JNI EXPORT jstring JNI CALL Java_ca_weblite_jni exanpl e_NSSavePanel saveDi al og
(JNIEnv *, jobject, jstring, jstring);

#i fdef _ cpl uspl us
}

#endi f

#endi f

A Description of the Code. There really isn't alot going on here. The key line to focus on here is the
method signature;

JNI EXPORT jstring JNICALL Java_ca_weblite_jni exanpl e_NSSavePanel _saveDi al og
(JNIEnv *, jobject, jstring, jstring);

Some key points to observe:

1. The method returns the type jstring. Thisis a JNI datatype that is defined inj ni . h to act as pointer
toaj ava. | ang. Stri ng class. Thisreturn typeis used becausethe JavasaveDi al og() method
that we defined, returnsatype St r i ng, so the native method must return a corresponding type.

Developing a JNI Cocoa
Wrapper on OS X

2. The name of the method has been named with the following naming convention:
e The method name startswith Java__

» AftertheJava_ prefix, theremainder of the method name matchesexactly thefully qualified method
name from Java, except that dots (".") have been replaced with underscores.

3. Thefirst parameter isa JNI Env pointer that provides information about the JNI environment to the
method. This is very useful for accessing the many utility functions that are available to help you
navigate between Java and Objective-C types.

4. The second parameter is of typej obj ect , whichisthe JNI equivalent of j ava. | ang. Obj ect . If
serves as a pointer to "this" (i.e. the NSSavePanel on which the method is running). This parameter
would not be present if our method had been declared st at i c.

5. Finally, the last two parameters of type jstring correspond with the two parameters that are passed to
the Java method.

4.1.4. Creating an Xcode Project

Finally, we can proceed to build our native library in Xcode. For this example, I'm using Xcode 4.4.

Step one isto open Xcode and start a new project.

Developing a JNI Cocoa
Wrapper on OS X

Figure 3.

Choose a template for your new project

B ios
(] .
Application ‘ﬂj
Framework & Library

Other N
— Cocoa Framework Cocoa Library Bul
pe=rls Application Plug-in

K 0sX
e
'l System Plug-in -

Application
Other C/C++ Library STL C++ Library

aaaaa

=1
m Cocoa Library

This template builds a library that links against the Cocoa

[Cancel]

Select the "Cocoa Library" option as we wish to distribute our library as a dynamic library (.dylib).

Click Next

Developing a JNI Cocoa
Wrapper on OS X

Figure4.

Choose options for your new project:

Product Mame | libsavepanel

Organization Name |Web Lite Solutions

Company ldentifier ca.weblite

Bundle Identifier ca.weblite.libsavepane

Type IEHE'H: + | |Your new product's bundle identifier

| | Use Automatic Reference Counting
EI Include Unit Tests

| Cancel | | Previous |[

On this pane, we enter the product details. For convenience, I'm naming the product "libsavepanel”, so that
it will produce a library named "libsavepanel .dylib" when it is built automatically. Y ou could, of course,
just renamethelibrary later or change a setting in Xcode if you want to name your product something else.

I mportant

You must uncheck the "Use Automatic Reference" counting option. If you fail to do
this, you will experience crashes when you try to use JavaNativeFoundation functions like
JNF_COCOA ENTERand JNF_COCOA EXI T.

Click "Next" to select a location to save the project. Once you have selected a location, Xcode should
open the empty project for you.

Developing a JNI Cocoa
Wrapper on OS X

Theproject explorer ontheleft column of the X code Ul will show thefilestructureof the project asfollows:

Figureb.

At
k4 libsavepanel
h‘ libsavepanel.h
.ﬂ' libsavepanel.m
v Supporting Files :
h‘ libsavepanel-Prefix.pch
| 2 libsavepanelTests
kL J Frameworks
» &= Cocoa.framework
| 2 I_r_"-_ SenTestingKit. framework
| 2 Other Frameworks
L J Products
Myl libsavepanel.dylib
libsavepanelTests.octest

4.1.5. Adding the JDK Headers to the Project

Since our project will depend on some librariesin the Java development kit (e.g. j ni . h), wewill need to
add the the headersin the JDK'sinclude directory to our project's header search path. Asof OS X 10.7, all
of your JDK libraries will be located in the / Li br ary/ Javal/ JavaVi rt ual Machi nes directory.
Y ou can either add the full pathto JDK'si ncl ude directory, or you can copy thei ncl ude directory into
your project folder, and then add that copy to your header search path. For this example, we'll copy it into
our project directory so that the project is more portable (i.e. we won't have to depend on the installation
location of the JDK in order to build our library.

WEe'l do thisin afew steps:
1. Createafolder inside the project's directory called j dk.
2. Copy the central IDK'sinclude directory into thej dk directory we just created.

$ cp -r /Library/Javal/ JavaVirtual Machi nes/jdkl. 7. 0.j dk/ Cont ent s/ Hone/ i ncl ude \
/ path/to/libsavepanel /jdk/incl ude

3. Add both the j dk/i ncl ude and j dk/ i ncl ude/ darwi n directories to the project's build
target's headers search path. This can be accomplished inside Xcode by clicking on the
| i bsavepanel option (thetop option) in the project explorer (i.e. the left column of Xcode), then
clicking the | i bsavepanel target under the TARGETS section of the next column (left column
of the main pandl).

10

Developing a JNI Cocoa
Wrapper on OS X

Figure®6.

L o

¥ I 3 targets, 05 X SDK 10.8
¥ |_|libsavepanel
|_h| ca_weblite_jniexample_NSSavePanel.h TARGETS
@ ca_weblite_jniexample_NSSavePanel.m E’.’j

PROJECT
-"_'| libsavepanel

|_h| libsavepanel.h
@ libsavepanel.m
¥ || Supporting Files
|h! libsavepanel-Prefix.pch

libsavepanelTests

Finally,intheBui | d setti ngs panel (themain section with all of the target properties), find the
"Header Search Paths" option.

Figure?7.
I Header Search Paths

Doubleclick the empty spaceto theright of thisoptionto edit the search paths. Then add thefollowing
two search paths, each on their own line;

1. $(SRCROOT) / j dk/ i ncl ude

2. $(SRCROOT) / j dk/ i ncl ude/ darwi n

Note

If you type in these search paths wrong, you'll likely see errors when you try to build your
project indicating that jni.h could not be found. If you get such errors, take a good look at
these search paths to ensure that the are pointing to the correct location, and that you have
correctly copied the JDK headersinto the correct location.

4.1.6. Adding The Header File to the Project

Now that our project is created, we proceed by adding the header file that we generated for our INI library.
Right-click (or control-click) on the libsavepanel folder in the project explorer of the Xcode project to
reveal the context menu. Then select the option"Add Fil es to |i bsavepanel ..."

11

Developing a JNI Cocoa

Wrapper on OS X
Figure8.

o« m=m

“15 Show in Finder
E Open with External Editor c
v OpenAs > L
Show File Inspector |

b]l

v g NewfFile...
» g2 New Project...

:g New Group

v jp NewGroup from Selection

¥ Sort by Name
Sort by Type

Search in Selected Group...

Add Files to "libsavepanel”...

Delete
Source Control >
Project Navigator Help >

—

Then select the ca_webl i t e_j ni exanpl e_NSSavePanel . h file that was created. Once the file
has been added, it should appear in the project explorer as shown below:

Developing a JNI Cocoa
Wrapper on OS X

Figure9.

libsavepanel
v, targets, 05 X SDK 10.8

¥ | |libsavepanel

h| libsavepanel.h
@ libsavepanel.m
¥ | |Supporting Files
|_h| libsavepanel-Prefix.pch
b | |libsavepanelTests
¥ || Frameworks
» &= Cocoa.framework
b §= SenTestingKit.framework
b | | Other Frameworks
¥ | |Products
By libsavepanel.dylib
libsavepanelTests.octest

4.1.7. Create the Objective-C .m file

The implementation of our native method will go inside a.m file that we need to create. We're do that
by selecting "File" > "New" > "File" from the top menu bar. And then selecting "Objective-C Class" for
thefile type:

13

Developing a JNI Cocoa

Wrapper on OS X
Figure 10.
0 Choose a template for your new file:
i
i Il ios
: Cocoa Touch
d Cand C++ AR
a User Interface - o
d AR Objective-C class Objective-C Objecti
category ext.
4 Resource
M Other L
3 £ osX
Test
E ~OCoz
1 Cand C++ Objective-C test
s User Interface case class
- Core Data
s | Resource
. Other
Objective-C class
OHajC
An Objective-C class, with implementation and header fil
| Cancel |

When it prompts you for the class name enter the exact name of your header file (minus the .h). E.g. in
this case our class name will be"ca_webl i t e_j ni exanpl e_NSSavePanel ".

Note

Wedon't actually need to create an objective C class. Wejust needed to create afile that would be
compiled using Objective-C. When the file is generated, we'll delete its contents and start fresh

anyways. Ultimately we just want an implementation file to accompany the .h file.

14

Developing a JNI Cocoa
Wrapper on OS X

Now that we have our objective-cimplementationfile, let'sdel ete the contents and create an empty function
to correspond with the definition in our header file:
#include "ca_weblite_jni exanpl e_NSSavePanel . h"

JNI EXPORT jstring JNI CALL Java_ca_weblite_j ni exanpl e_NSSavePanel _saveDi al og
(JNIEnv * env, jobject jthis, jstring title, jstring extension){

return NULL;

Essentially | created this method definition by copying the signature from the header file, then adding
parameter names to the parameter types.

At this point, we have enough to at least test and make sure that our library can be loaded and
used properly. Begin by building the Xcode project ("Project” > "Build"). Then right click on the
| i bsavepanel . dyl i b itemin the "Products’ folder of the X code project explorer, and select " Show
in Finder".

Figure11.

Show in Finder
Open with External Editor
Open As >
Show File Inspector

New File...
New Project...

This will alow us to copy the dylib file into our Java project directory. After copying the
I i bsavepanel . dyl i b fileinto our INIExample project directory (the Netbeans project), our project
directory will look like:

15

Developing a JNI Cocoa

Wrapper on OS X
Figure 12.
800] INIExample
| < | » | = IENREINERNEES (Q
FAVORITES Name i —latte: M
E) All My Files |~ {58l build roday?
. 1 build.xml Today !
€5 AirDrop » @ dist Today !
gl";"hg Applications libsavepanel.dylib Today |
[Desktop > @ nbproject Today
>
[} Documents & sre eail

4.1.8. Writing a Simple Test Loader

At this point we have abare-bones JNI module where the native method only returnsNUL L. Thisisagood
time to test our module out and make sure that it, at least, isloaded properly by our Java application. Let's
add amai n() method to our NSSavePanel class so that we can test out our module.

public static void main(String[] args){

new JFrame();

NSSavePanel

/1 Necessary to start the wi ndowi ng system
panel = new NSSavePanel ();
String result

= panel .saveDi al og("Select a file", "pdf");

Systemout.println("The result was "+result);

}

Now, if you run this file from Netbeans, you should see the following output:

run:

The result was null
BUI LD SUCCESSFUL (total tine: 0 seconds)

So you can see that our native method returned null, just as expected.

Tip

If you don't receive this output, but instead receive an Unsat i sfi edLi nkErr or, or if your
application just crashes, then you may want to doublecheck that your | i bsavepanel . dyl i b
is named correctly and located in the top level of your project's folder (or in some directory
included in your library path).

4.1.9. The JavaNativeFoundation Framework

Now that we know that our library is loading properly, it is al down hill from here. We just need to
implement the native method in Objective-C. Before we move into the code, there is one more thing that
we need to do with our Xcode project: Add the JavaNativeFoundation framework.

16

Developing a JNI Cocoa
Wrapper on OS X

Tip

The Java Native Framework is a collection of C functions and macros that provide easier
interoperability between the Java world and the Cocoa world. It includes functions for
converting between NSSt r i ngs and Java strings. The two most frequently used macros are
JNF_COCOA _ENTER(env) and JNF_COCOA EXI T(env) which are meant to be called
respectively at the beginning and end of each function. These will set up and take down
Autorelease pools, as well as help clean up memory in case an exception is thrown in the body
of the method. In addition, these will catch Objective-C exceptions and rethrow them as Java
exceptions. If you don't use these, your function will probably still work, but you run a greater
risk of introducing subtle bugs and memory leaks.

YoucanaddtheJavaNat i veFr anewor k by right-clicking (or control-clicking) onthe Fr amewor ks
folder in your Xcode project explorer, and selecting "Add files to libsavepanel...". Then, in the file
dialog, browsetotheJavaNat i veFoundat i on. f r anewor k filelocated as/ Syst ent Li br ary/
Framewor ks/ JavaVM f r amewor k/ Fr anewor ks

I mportant

The JavaNat i veFoundat i on framework is a sub-framework of the JavaVMframework.
Do not add the JavaVMframework to your project if you are using JDK 7 or higher. Only add
theJavaNat i veFoundat i on. f r anewor k.

After adding the JavaNat i veFoundat i on framework to your project, the "Fr amewor ks" folder
will look like:

Figure 13.

_

| 2 lf-. JavaMativeFoundation.framework
b &= Cocoa.framework

| 2 I_'_'-. SenTestingKit.framework

| 2 Other Frameworks

4.1.10. Implementing the Objective-C Function

Now we ae ready to do some coding. After implementing our method, the fina
ca_weblite_jni exanpl e_NSSavePanel . mfile content is:

#i nclude "ca_weblite_jni exanpl e_NSSavePanel . h"
#i mport "JavaNati veFoundati on/ JavaNati veFoundati on. h"

#i mport " AppKit/ AppKit.h"

JNI EXPORT jstring JNI CALL Java_ca_weblite_jni exanpl e_NSSavePanel _saveDi al og
(JNIEnv * env, jobject jthis, jstring title, jstring extension)({

/1l Obligatory opening to the JNI method. Sets up an autorel ease pool,
/1 and rethrows Qbjective-C exceptions as Java exceptions. (Paired
/1 with JNF_COCOA EXT(env) at end of nethod.

JNF_COCOA _ENTER(env) ;

17

Developing a JNI Cocoa
Wrapper on OS X

/1l Ajstring container for the output val ue
jstring path = NULL;

/1 Placehol der for the NSString path that will be set inside the block
__block NSString *nsPath = NI ;

/1l Copy the title to an NSString so it an be used safely inside the bl ock
/1 even if it is on a different thread
NSString *nsTitle = JNFJavaToNSString(env, title);

/1 Copy the extension into an NSString so it can be used safely inside
/1 the block even if it is on a different thread
NSStri ng *cocoaExtensi on = JNFJavaToNSSt ri ng(env, extension);

// Create a block for the code that will create and interact with
/1 the NSSavePanel so that it can be run on a different thread. All
/1 interaction with the NSSavePanel class needs to be on the main application
/1 thread, so if this method is accessed on a different thread (e.qg.
// the AWI event thread, we'll need to block and run this code on the
/1 main application thread.
voi d (”bl ock) (voi d);
bl ock = ~(void){
/1l This block's code nust ONLY ever be run on the main
/1 application thread.

NSSavePanel *panel = [NSSavePanel savePanel];
NSArray *types = [NSArray arrayWthQbjects: cocoaExtension,nil];
[panel set All owedFi | eTypes: types];
[panel set CanSel ect H ddenExt ensi on: TRUE] ;
[panel set Ext ensi onH dden: TRUE] ;
[panel setTitle: nsTitle];
if ([panel runMdal] == NSFil eHandl i ngPanel OKButton){
/1 The user clicked K in the file save dialog, so we
/1 now save the user's file path selection in the nsPath.
NSURL * out = [[panel URL] fil ePat hURL];

/1 Set the nsPath so that it can be accessed outside this
/1 block after it is run. W call retain on the string
/!l so that it won't be destroyed after the block is

/1 finished executing.

nsPath = [[out path] retain];

b

/1 Check if this is already running on the main thread.

if ([NSThread i sMai nThread]) {
/1 W are on the main thread, so we can execute the block directly.
bl ock();

} else {
/1 We are not on the main thread so we need to run the bl ock on the
/!l main thread, and wait for it to conplete.
[INFRunLoop perfor nOnMai nThr eadWai ti ng: YES wi t hBl ock: bl ock] ;

18

Developing a JNI Cocoa
Wrapper on OS X

if (nsPath I'= nil){
/1 Since nsPath is Not nil, it looks |ike the user chose a file
/1 Copy the NSString path back to the jstring to be returned
/1 fromthe method.
path = JNFNSToJavaString(env, nsPath);

/!l Rel ease the nsPath to prevent nenory | eak.
[nsPat h rel ease];

}

/1 Return the path. This may be null
return path;

/1 WMatching the opening JNF_COCOA ENTER(env) at the begi nning of the nethod.
JNF_COCOA_EXI T(env);

/1 1t is necessary to return NULL here in case there was sone failure or
/1 exception that prevented us fromreaching the return statements inside
/1 the JNF_COCOA ENTER/ EXI T region.

return NULL,;

This source code is the result of afew iterations, so it requires some explanation.

1. The Block. Since we are using a Cocoa component (NSSavePanel), and it blocks, we need to take
some care when it comes to thread management to make sure that the code that interacts with the actual
Save panel is running on the main thread. To this end, we wrap most of the code inside a block. Then
weusethe[+JNFRunLoop perf or mOnMai nThr eadWai ti ng: wi t hBl ock] method to cause
the block to run on the main thread while the current thread waits.

2. JNF_COCOA ENTER(env) and JNF_COCOA EXIT(env). These macros are placed at the beginning
and end of the method to help with memory management. These will set up an autorelease pool and
help clean up memory in case an exception is thrown in the body of the method.

I mportant

JNF_COCOA_ENTER and JINF_COCOA_EXIT currently cannot be used with Automatic
Reference Counting. Make sure you have Automatic Reference Counting (ARC) off in your
project, or you will experience crashes at runtime.

3. Return NULL after JNF_COCQOA ENTER. If an exception isthrown inside the JNF_ COCOA ENTER/
EXI T cadlls, then it is possible that none of the return statements will be reached in your method. To
handle this case, you should return NULL after the JNF_COCOA _EXI T call.

4. The NI environment should only be accessed from the thread in which the INI method is called. Notice
that we do not use any of the jstring objects or call any JNF functions from inside the block because
this block might be running on a different thread than the JNI environment was created on. Accessing
one of these variables from a different thread may cause the VM to crash. We solved this problem by
first copying thej st ri ng valuesthat were required by the block into NSSt r i ng objects which can
safely be used between threads.

19

Developing a JNI Cocoa
Wrapper on OS X

4.1.11. Testing It Out

We're done now. It'stime to test it, so we'll build the X code project, copy the libsavepanel .dylib file into
the JNI Exanpl e directory (i.e. the Netbeans project), then try to run the NetBeans test. It should open
up asave dialog asfollows:

Figure 14.
(00O Select a file
Save As: |
l«|»|[32] = m im || =+ || (&] Downloads
FAVORITES (&5 Applications
¥\ Applications g Desktop
_ » (@] Documents
Desktop Downloads
"} Documents L foo
0 Downloads Movies
, 2] Music
=1 Movies] NetBeansProjects
J7 Music] OCRTools
Pictures pdfocrx.log
Pictures
SHARED (@] Public
L Beverly Wu's Comp... [src
unison.log
DEVICES
(¥ Hide extension | New Folder |

And if you enter afile name, then the dialog will close and you should see the following output in the
console;

run:
The result was /Users/shannah/ Downl oads/t est docunent . pdf
BUI LD SUCCESSFUL (total tine: 1 minute 6 seconds)

20

Developing a JNI Cocoa
Wrapper on OS X

4.2. Deployment

By default, Xcode will try to build projects to be deployed on the latest OS. If you want to deploy it on an
older OS (e.g. if you are building the library on Mountain Lion (OS X 10.8) and you want to make sure
it works on 10.6 or higher), then you will need to set the OS X Depl oynment Tar get setting in the
project properties to the oldest version that you want to target.

If you are planning to include your JNI library as part of a Mac application bundle, then you should place
itinsidethe Cont ent s/ Mac OS directory of the .app bundle. TheJavaAppl i cat i onLauncher that
is produced by Appl i cat i onBundl er setsthis as the default directory for javallibrary.path, so your
library should get "found" if it is placed there.

5. Other Resources

| wrote this tutorial partly because | found that, while there are many resources around the internet on the
various aspects of NI, there weren't any that tied it all together for devel oping a INI module for Mac OS
X. The following are some useful resources for developing NI libraries:

» JavaNativeFoundation Reference [http://devel oper.apple.com/library/mac/#documentation/
CrossPl atform/Reference/JavaNativeFoundation_Functions/Reference/reference.html]

» JNI Wikipedia Page [http://en.wikipedia.org/wiki/Java Native Interface]

 Oracle INI Documentation (JDK6) [http://docs.oracle.com/javase/7/docs/technotes/guides/jni/]

21

http://developer.apple.com/library/mac/#documentation/CrossPlatform/Reference/JavaNativeFoundation_Functions/Reference/reference.html
http://developer.apple.com/library/mac/#documentation/CrossPlatform/Reference/JavaNativeFoundation_Functions/Reference/reference.html
http://developer.apple.com/library/mac/#documentation/CrossPlatform/Reference/JavaNativeFoundation_Functions/Reference/reference.html
http://en.wikipedia.org/wiki/Java_Native_Interface
http://en.wikipedia.org/wiki/Java_Native_Interface
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/

